H 桥栅极驱动控制器

主要特点

- 单通道 H 桥栅极驱动器
 -驱动四个外部 N 沟道 MOSFET
 - -支持 100% 脉宽调制 (PWM)占空比
- 工作电源电压范围: 5.5V 至 45V
- 三个控制模式
 - -PH/EN、独立半桥和 PWM
- 用于配置的串行接口
- 可调压摆率控制
- 每个半桥独立控制
- 支持 1.8V、3.3V 和 5V 逻辑输入
- 电流分流放大器
- 集成 PWM 电流调节功能
- 低功耗休眠模式
- 保护特性
 - -电源欠压锁定 (UVLO)
 - -电荷泵欠压 (CPUV)锁定
 - -过流保护 (OCP)
 - -栅极驱动故障 (GDF)
 - 过温保护 (TSD)
 - 看门狗计时器
 - -故障调节输出 (nFAULT)

产品简述

MS31703NA 是一款小型单通道 H 桥栅极驱动器。它使用四个外部 N 通道 MOSFET,驱动一个双向刷式直流电机。

PH/EN、独立半桥或 PWM 允许轻松连接到控制器电路。内部传感放大器提供可调的电流控制。 集成的电荷泵可提供 100% 占空比,而且可用于驱动外部反向电池开关。

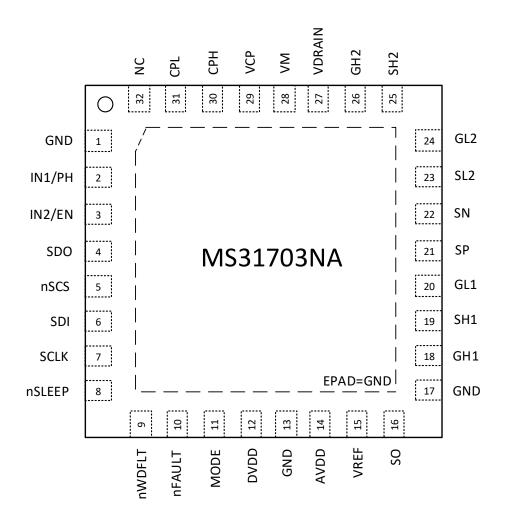
独立半桥模式支持半桥共享,能够控制多个直流电机。MS31703NA 内置相应的电路,能够使用固定关断时间的 PWM 电流斩波来调节绕组电流。

MS31703NA 可以通过可编程压摆率控制技术,降低电磁干扰 (EMI),可以灵活应用,而且可以防止任何栅极短路问题。

应用

- 电动车窗升降器、天窗、座椅、滑动门、后 备箱和尾门
- 继电器
- 刷式直流泵

产品规格分类

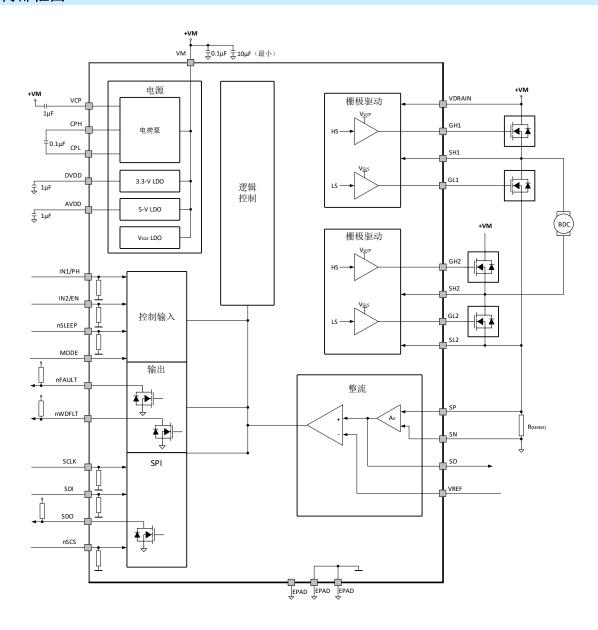

产品	封装形式	丝印名称
MS31703NA	QFN32	MS31703NA

目录

1. 主要特点	1
2. 应用	1
3. 产品简述	1
4. 产品规格分类	
5. 目录	2
6. 管脚图	3
7. 管脚说明	
8. 内部框图	
9. 极限参数	
10. 推荐工作条件	
11. 电气参数	
12. 功能描述	
13. 典型应用图	
14. 封装外形图	
15. 印章与包装规范	
16. 声明	
17. MOS 电路操作注意事项	

到 瑞盟科技

管脚图


管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
GND	1	-	接地
IN1/PH	2	I	输入控制引脚。该引脚的逻辑取决于 MODE 引脚。 该引脚通过内部下拉电阻接地。
IN2/EN	3	1	输入控制引脚。该引脚的逻辑取决于 MODE 引脚。 该引脚通过内部下拉电阻接地。
SDO	4	0	SPI 数据输出。该引脚为开漏输出,需要外部上拉电阻。
nSCS	5	1	SPI 片选输入。该引脚接低时,使能数据输入。
SDI	6	1	SPI 数据输入。该引脚通过内部下拉电阻接地。
SCLK	7	1	SPI 时钟输入。该引脚通过内部下拉电阻接地。
nSLEEP	8	1	休眠模式输入引脚。将该引脚拉至逻辑低,使器件进入低功 耗休眠模式,FET 处于高阻态 (Hi-Z)。该引脚通过内部下拉电 阻接地。
nWDFLT	9	0	看门狗故障指示引脚。当出现看门狗故障时,该引脚被拉 低。该引脚为开漏输出,需要外部上拉电阻。
nFAULT	10	0	故障指示引脚。当出现故障时,该引脚被拉低。该引脚为开漏输出,需要外部上拉电阻。
MODE	11	1	模式控制引脚。当引脚拉至逻辑低时,使能 EN/PH 控制模式。当引脚拉至逻辑高时,使能独立半桥模式。当引脚为悬空时,使能 PWM 控制模式。当通电或退出休眠模式时,该引脚的操作锁定。该引脚连接到内部上拉和下拉电阻。
DVDD	12	0	3.3V 逻辑电源输出。该引脚通过 1μF 旁路电容接地。
GND	13	-	接地
AVDD	14	0	5V 模拟电源输出。该引脚通过 1μF 旁路电容接地。
VREF	15	I	模拟参考电压输入。该引脚控制斩波电流。
SO	16	0	分流放大器输出。在该引脚上放置的电容不超过 1nF。
GND	17	-	接地
GH1	18	0	高侧栅极。将该引脚连接到高侧 FET 栅极。
SH1	19	I	高侧源极。将该引脚连接到高侧 FET 源极。
GL1	20	0	低侧栅极。将该引脚连接到低侧 FET 栅极。

管脚编号	管脚名称	管脚属性	管脚描述
SP	21	I	分流放大器正输入。接到 sense 电阻正端。
SN	22	I	分流放大器负输入。接到 sense 电阻负端。
SL2	23	I	低侧源极。将该引脚连接到低侧 FET 源极。
GL2	24	0	低侧栅极。将该引脚连接到低侧 FET 栅极。
SH2	25	I	高侧源极。将该引脚连接到高侧 FET 源极。
GH2	26	0	高侧栅极。将该引脚连接到高侧 FET 栅极。
VDRAIN	27	I	高侧漏极。将该引脚连接到高侧 FET 漏极。
VM	28	-	电源。将该引脚连接至电机电源电压。该引脚通过 0.1μF 和最 小 10μF 旁路电容接地。
VCP	29	1/0	电荷泵电压。与 VM 连接 1μF 电容。
СРН	30	1/0	电荷泵电容输出。
CPL	31	1/0	电荷泵电容输入。与 CPH 连接 0.1μF 电容。
NC	32	-	无连接

内部框图

3//瑞盟科技 Rullmeng TECHNOLOGY

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
电源电压	VM	-0.3 ~ 47	V
电荷泵电压	VCP, CPH	-0.3 ~ V _{VM} +12	V
电荷泵电容输入	CPL	-0.3 ∼ V _{VM}	V
3.3V 逻辑电源电压	DVDD	-0.3 ~ 3.8	V
5V 模拟电源电压	AVDD	-0.3 ~ 5.75	V
漏极引脚电压	VDRAIN	-0.3 ~ 47	V
VM 和 VDRAIN 的电压差	VM - VDRAIN	-10 ~ 10	V
	IN1, IN2, nSLEEP, nFAULT,		
逻辑控制引脚电压	nWDFLT, VREF, MODE,	-0.3 ~ 5.75	V
	nSCS, SCLK, SDI, SDO		
高侧栅极引脚电压	GH1, GH2	-0.3 ~ V _{VM} +12	V
低侧栅极引脚电压	GL1, GL2	-0.3 ~ 12	V
高侧源极引脚电压	SH1, SH2	-1.2 ~ V _{VM} +1.2	V
八次孙士即校入司即中国	SP, SL2	-0.5 ~ 1.2	V
分流放大器输入引脚电压	SN	-0.3 ~ 0.3	V
分流放大器输出引脚电压	SO	-0.3 ~ 5.75	V
分流放大器输出引脚电流	SO	0 ~ 5	mA
VDRAIN 极限电流	I _{VDRAIN}	-2 ∼ 2	mA
开漏输出电流	nFAULT, SDO, nWDFLT	0 ~ 10	mA
栅极引脚拉电流	GH1, GL1, GH2, GL2	0 ~ 250	mA
栅极引脚灌电流	GH1, GL1, GH2, GL2	0 ~ 500	mA
工作结温	T _J	-40 ~ 150	°C
存储温度	T _{stg}	-65 ~ 150	°C
ESD(HBM)		±3000	V
结到环境的热阻	Reja	40	°C/W

推荐工作条件

4.114					
参数 	符号	最小	标准	最大	单位
电源电压	V _{VM}	5.5		45	V
逻辑电压	Vcc	0		5.25	V
分流放大器参考电压	V _{VREF}	0.31		3.6	V
PWM 频率	f _(PWM)			100	kHz
5V 模拟电源电流	lavdd			30 ²	mA
3.3V 逻辑电源电流	I _{DVDD}			30 ²	mA
分流放大器输出电流	Iso			5	mA
工作环境温度	TA	-40		125	°C

注:

- 1. V_{VREF} 在 0 到 0.3V 时可以运行,但精度较低。
- 2. 必须遵守功耗和热限制。

电气参数

无其他说明,T_A=25°C, V_{VM}=13.5V

参数	符号	测试条件	最小值	典型值	最大值	单位	
电源 (VM, AVDD, DV	DD)						
		栅极驱动功能	5.5		45		
VM 工作电压	V _{VM}	逻辑功能	4.5		45	V	
VM 工作电流	lvм	V _{VM} =13.5V, nSLEEP=1		6.0		mA	
/ Luci . L. Ve		nSLEEP=0,V _{VM} =13.5V,T _A =25°C		13			
VM 休眠电流	I(SLEEP)	nSLEEP=0,V _{VM} =13.5V,T _A =125°C			30	μΑ	
<i>t</i>		2mA 负载		3.3			
DVDD 输出电压	V _{DVDD}	30mA 负载,V _{VM} =13.5V		3.2		V	
#A st. t. F		2mA 负载		5.0			
AVDD 输出电压	V _{AVDD}	30mA 负载,V _{VM} =13.5V		5.0		V	
电荷泵 (VCP, CPH, CP	PL)						
		V _{VM} =13.5V		23.8			
VCP 工作电压	V_{VCP}	V _{VM} =8V		14.7		V	
		V _{VM} =5.5V		9.7			
		V _{VM} >13.5V	9.5			mA	
电荷泵电流容量	I _{VCP}	8V <v<sub>VM<13.5V</v<sub>	9.5				
		5.5V <v<sub>VM<8V</v<sub>	7.5				
控制输入(IN1/PH, IN	2/EN, nSLE	EEP, MODE, nSCS, SCLK, SDI)					
逻辑低输入电压	V _{IL}		0		0.8	V	
逻辑高输入电压	ViH		1.5		5.25	V	
逻辑输入滞后	V _{hys}		100			mV	
逻辑低输入电流	I _{IL}	V _{IN} =0V, IN1/PH, IN2/EN, nSLEEP, nSCS, SCLK, SDI	-5		5	μА	
		V _{IN} =0V, MODE			80	μА	
逻辑高输入电流	Іін	V _{IN} =5V, IN1/PH, IN2/EN, nSLEEP, nSCS, SCLK, SDI			70	μΑ	
		V _{IN} =5V, MODE			120	μА	

参数	符号	测试条件	最小值	典型值	最大值	单位	
		IN1/PH, IN2/EN, nSLEEP,					
下拉电阻	R _{PD}	nSCS, SCLK, SDI		100		kΩ	
		MODE		55		kΩ	
上拉电阻	R _{PU}	MODE		26		kΩ	
控制输出 (nFAULT, nW	DFLT, SDO)	_	T	T	T	
逻辑低输出电压	Vol	I _O =2mA			0.1	V	
高阻态输出漏电流	l _{OZ}	5V 上拉电压	-2		2	μΑ	
FET 栅极驱动器(GH1,	GH2, SH1,	SH2, GL1, GL2)	_	T	T	T	
<i>→ /</i> 54		V _{VM} >13.5V,以 SHx 为参考		10.5	11.5		
高侧 V _{GS} 栅极驱动	V _{GSH}	V _{VM} =8V,以 SHx 为参考	5.7		6.8		
(栅极到源极)		V _{VM} =5.5V,以 SHx 为参考	3.4		4.3	V	
低侧 V _{GS} 栅极驱动	V _{GSL}	V _{VM} >10.5V		10.5			
(栅极到源极)		V _{VM} <10.5V	V _{VM} -2				
		IDRIVE=3'b000		14			
		IDRIVE=3'b001		28			
		IDRIVE=3'b010		65		İ	
高侧拉电流峰值	I _{DRIVE}	IDRIVE=3'b011		92			
(V _{VM} =13.5V)	(SRC_HS)	IDRIVE=3'b100		130		mA	
		IDRIVE=3'b101		183			
		IDRIVE=3'b110		221			
		IDRIVE=3'b111		248			
		IDRIVE=3'b000		21			
		IDRIVE=3'b001		41			
		IDRIVE=3'b010		99			
高侧灌电流峰值 (V _{VM} =13.5V)	I _{DRIVE}	IDRIVE=3'b011		136			
	(SNK_HS)	IDRIVE=3'b100		190		mA	
		IDRIVE=3'b101		252			
		IDRIVE=3'b110		322			
		IDRIVE=3'b111		383			

参数	符号	测试条件	最小值	典型值	最大值	单位				
		IDRIVE=3'b000		10						
		IDRIVE=3'b001		20						
		IDRIVE=3'b010		49						
低侧拉电流峰值		IDRIVE=3'b011		68						
(V _{VM} =13.5V)	IDRIVE(SRC_LS)	IDRIVE=3'b100		99		mA				
		IDRIVE=3'b101		132						
		IDRIVE=3'b110		179						
		IDRIVE=3'b111		230						
		IDRIVE=3'b000		21						
		IDRIVE=3'b001		42						
		IDRIVE=3'b010		96		mA				
低侧灌电流峰值	I _{DRIVE} (SNK_LS)	IDRIVE=3'b011		136						
(V _{VM} =13.5V)		IDRIVE=3'b100		196						
		IDRIVE=3'b101		250						
		IDRIVE=3'b110		334						
		IDRIVE=3'b111		423						
		t _{DRIVE} 后的上拉电流,		10						
场效应管保持电流	I _{HOLD}	GHx				mA				
		t _{DRIVE} 后的上拉电流,		40		,				
		GLx								
场效应管强下拉电流	Istrong	GHx		750		mA				
		GLx		1000						
场效应管栅极保持电阻	R _(OFF)	GHx 到 SHx 的下拉		150		kΩ				
		GLx 到 GND 的下拉		150						
分流放大器和 PWM 电流	分流放大器和 PWM 电流控制 (SP, SN, SO, VREF)									
VREF 输入有效电压	V_{VREF}	用于内部斩波电流控制	0.3		3.6	V				
VREF 输入阻抗	R _{VREF}	VREF_SCL=00 (100%)	1			ΜΩ				
1847	· VILE	VREF_SCL=01,10,11		175		kΩ				

参数	符号	测试条件	最小值	典型值	最大值	单位	
		GAIN_CS=00,10 <v<sub>SP<450mV,</v<sub>		10			
		V _{SN} =GND		10			
		GAIN_CS=01, 60 <v<sub>SP<225mV,</v<sub>		20			
放大器增益	Av	V _{SN} =GND		20		V/V	
从入储垣皿	AV	GAIN_CS=10,10 <v<sub>SP<112mV,</v<sub>		40		V/V	
		V _{SN} =GND		40		-	
		GAIN_CS=11, 10 <v<sub>SP<56mV,</v<sub>		80			
		V _{SN} =GND		80			
输入失调电压	V _{IO}	$V_{SP}=V_{SN}=GND$		5	10	mV	
输入失调电压温漂	V _{IO(DRIFT)}	V _{SP} =V _{SN} =GND		10		μV/°C	
SP 输入电流	I _{SP}	V _{SP} =100mV, V _{SN} =GND		-50		μΑ	
SO 输出电压范围	V _{SO}		Av×V _{IO}		4.5	V	
SO 引脚电容	C _(SO)				1	nF	
保护电路			1		Г	ı	
VM 欠压保护	.,	VM 下降,UVLO2 报警阈值		5.25		.,	
VIVI 人压床t)	V _(UVLO2)	VM 上升,UVLO2 恢复阈值		5.4		V	
VM 逻辑欠压锁定	V _(UVLO1)				4.5	V	
VM 欠压迟滞	V _{hys(UVLO)}	上升到下降	100			mV	
 	.,	VCP 下降,CPUV 报警阈值		VM+1.5		.,	
电荷泵欠压保护	V _(CP_UV)	VCP 上升,CPUV 恢复阈值		VM+1.55		V	
由 共石 反 C 江 洪	V _{hys}	上升到下降		50			
电荷泵欠压迟滞	(CP_UV)			50		mV	
		VDS=3'b000		0.06			
		VDS=3'b001		0.14			
7. 法法伊拉阿伊		VDS=3'b010		0.17			
V _{DS} 过流保护阈值	.,	VDS=3'b011		0.2			
(外部 FET 的	V _{DS} (OCP)	VDS=3'b100		0.12		V	
V _{DS})		VDS=3'b101		0.24			
		VDS=3'b110		0.48			
		VDS=3'b111		0.96			

符号	测试条件	最小值	典型值	最大值	单位
V _{SP(OCP)}	相对于 GND 的 Vsp		1		V
T _(OTW)		120	135	145	°C
T _{SD}		150			°C
T _{hys}			20		°C
V	正钳位电压		14		V
V C(GS)	负钳位电压		-0.7		V
)	,				
t(SLEEP)	nSLEEP=0 到休眠启动			110	μs
t _(wu)	nSLEEP=1 到输出改变			1.1	ms
ton	VM>UVLO2 到输出改变			1.1	ms
)					
f _{S(VCP)}	VM>UVLO2	200	400	700	kHz
LEEP, MOI	DE, nSCS, SCLK, SDI, PH, EN)				
t _{pd}	IN1、IN2 到 GHx 或 GLx		500		ns
GH2, SH1,	SH2, GL1, GL2)				
	TDEAD=2'b00		130		
	TDEAD=2'b01		260		
t _(DEAD)	TDEAD=2'b10		520		ns
	TDEAD=2'b11		1040		
t(DRIVE)			2.75		μs
	SP, SN, SO, VREF)		,		•
	V _{SP} =V _{SN} =GND 至 V _{SP} =240mV,				
				0.5	
ts					μs
				2	
	VsP(OCP) T(OTW) TSD Thys Vc(GS) t(SLEEP) t(wu) ton fs(VCP) LEEP, MOI tpd GH2, SH1, t(DEAD)	Vsp(ocp)	VSP(OCP) 相对于 GND 的 VSP 120 150	Vsp(oCP) 相对于 GND 的 Vsp	VSP(OCP) 相对于 GND 的 VSP

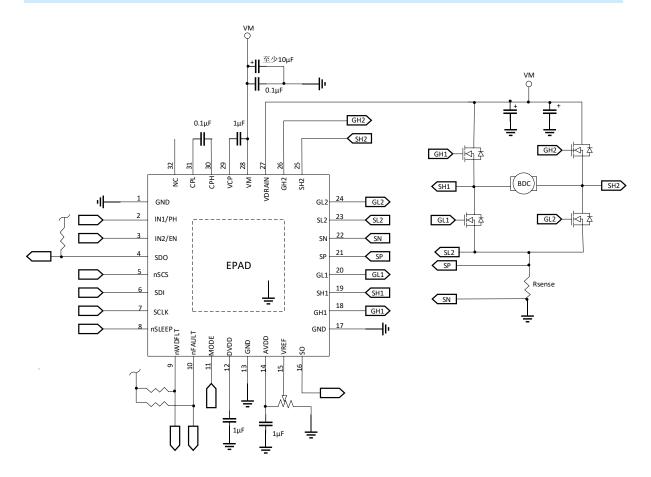
参数	符号	测试条件	最小	典型	最大	单位
建立时间	t s	$V_{SP}=V_{SN}=GND$ 至 $V_{SP}=30mV$, $V_{SN}=GND$, $A_{V}=80$, $C_{(SO)}=200pF$			4	μs
		TOFF=00		27.5		
V No. 1 A-1		TOFF=01		55		
PWM 关断时间	t _{off}	TOFF=10		110		μs
		TOFF=11		220		
PWM 空白时间	t _(BLANK)			2.2		μs
VM 欠压检测时间	t(UVLO)	VM 下降,UVLO 报警		11		μs
过流检测时间	t _(OCP)			4.4		μs
过流关断时间	t _(RETRY)			3.3		ms
		WD_DLY=2'b00		11		
		WD_DLY=2'b01		22		
看门狗超时阈值	t _(WD)	WD_DLY=2'b10		55		ms
		WD_DLY=2'b11		110		
看门狗计时器复位周期	t _(RESET)			70		μs

加端盟科技 MS31703NA

功能描述

MS31703NA 通过控制四个外部 NMOSFET,来驱动双向有刷直流电机。MS31703NA 还可以在独立 半桥模式下运行,以驱动两个单向有刷直流电机。支持 5.5V 到 45V 的电源电压,并通过 nSLEEP 引 脚,启用低功耗休眠模式。控制模式有三个选项,包括可配置的 PH/EN、独立半桥控制或 PWM 模式,这样可以方便与控制器电路连接。

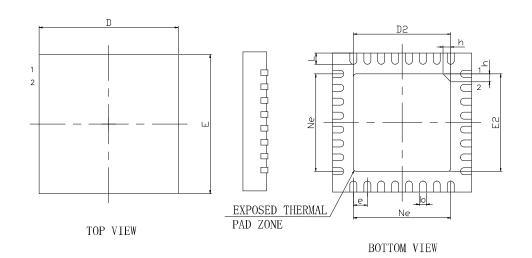
MS31703NA 可以调整栅极驱动强度或栅极驱动电流,以优化不同的 FET 应用,而无需外部电阻。通过将所需的 FET 驱动电路集成到单个设备中,显著减少了电机驱动系统的器件数量。峰值电流可通过 SPI 进行调整。当 VM 电压大于 13.5V 时,高侧和低侧 FET 均以 10.5V(标称)的栅源电压(VGS)驱动。在较低 VM 电压下,VGS 降低。高侧栅极驱动电压是通过一个双倍结构的电荷泵产生的,该电荷泵可调节至 VM+10.5V。


MS31703NA 的分流放大器增益可以通过 SPI 进行配置。可通过内置的固定关断时间的电流斩波方式来对电流进行限制。

MS31703NA 还具有完整的保护功能,包括:欠压锁定(UVLO)、过流保护(OCP)、栅极驱动故障和过温保护(TSD)。

MS31703NA 集成内部数字振荡器和内部电荷泵的扩频时钟功能。该功能与输出转换率控制相结合,将辐射降至最低。

3// 瑞盟科技


典型应用图

3//瑞盟科技 Ruimeng TECHNOLOGY

封装外形图

QFN32

SIDE VIEW

	尺寸(毫米)						
符号	最小	典型	最大				
А	0.70	0.75	0.80				
A1	-	0.02	0.05				
b	0.18	0.25	0.30				
С	0.18	0.18 0.20					
D	4.90	5.00	5.10				
D2	3.40	3.50	3.60				
e	0.50BSC						
Ne	3.50BSC						
E	4.90	5.00	5.10				
E2	3.40	3.50	3.60 0.45				
L	0.35	0.40					
h	0.30	0.35	0.40				

MS31703NA

印章与包装规范

1. 印章内容介绍

311

MS31703NA XXXXXXX

产品型号: MS31703NA 生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS31703NA	QFN32	1000	8	8000	4	32000

3// 瑞盟科技 Rullineng TECHNOLOGY

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

¾/端盟科技 MS31703NA

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路1号 高新软件园9号楼701室

http://www.relmon.com